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We consider a quantum particle in a double-well potential, for simplicity in the 
two-level approximation, coupled to a phonon field. We show that static and 
dynamical ground state correlations of the particle and of the field are 
expressible through expectations in an Ising model over N (rather than Z). Its 
free measure is a spin flip process with flip rate e, the difference in energy 
between the ground state and the first excited state. The Ising model has a 
ferromagnetic pair interaction whose form depends on the couplings to the 
phonon field and on the dispersion relation of the phonon field. In physical 
applications the interaction is long ranged and decays as t -z for large distances. 
In this case we prove that for sufficiently strong coupling the particle becomes 
localized in one of the wells. The effective tunnel rate is zero. The transition to 
localization is associated with the generation of an infinite number of low 
momentum phonons. We apply the Ising technology to our problem and discuss 
the phase diagram in some detail. 

KEY WORDS: Two-level system coupled to an ideal heat bath; one-dimen- 
sional Ising model with long-range forces; absence and existence of a phase 
transition (= degeneracy of the ground state). 

1. I N T R O D U C T I O N  

Let us consider the motion of a particle (single degree of freedom) in a 
double-well potential of the form V~(q) = 2(1 - q2)2, 2 > 0. A low-energy 
classical particle in this potential simply oscillates around either one of the 
two minima located at q =  _+1. A quantum particle, however, has the 
possibility of tunneling through the potential barrier to the other well and 
will do so with a frequency approximately propor t ional  to 
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exp{-~,dq[2V~(q)]~/2}=expE-4(22)l/2]; cf., e.g., Ref. 1, rn=l=h.  
Now let us assume that the particle interacts in addition with a phonon 
field (or the electromagnetic field; cf. below) in thermal equilibrium. If the 
thermal energies are much smaller than the height, 2, of the potential 
barrier, then classically the particle will once in a while be kicked by a large 
thermal excitation providing enough energy for a jump across the potential 
barrier into the other well. The particle's dynamics consists of two, in time 
well separated types of motions: fluctuations in either well and jumps at 
random (Poisson) times between the two wells. We are interested here in 
the dynamics of the quantum particle in the limit where thermal excitations 
are completely suppressed, i.e., the phonon field should be at zero tem- 
perature. The problem is then to understand how the quantum mechanical 
tunneling between the two wells is modified by the interaction with the 
phonon field. 

We are, of course, not the first ones to study this problem. But let us 
first mold our problem into a standard form and list our main results. In 
Section 2 we will then discuss the various physical realizations. 

The Hamiltonian of the quantum particle, not coupled to the phonon 
field, is given by 

H =  -1A + V~ (1.1) 

(We set the mass m= 1 =h.) If ), is large, then the ground state, ~b o, and 
the first excited state, ~bl, are energetically well separated from all other 
states. This suggests to use of a two-level approximation. We choose the 
representation where (~) and (o) corresponds to an approximately Gaussian 
wave packet in the right- and left-hand wells, respectively. Then 
N//~ ~10 ~ ({), ~ ~/1 ~ (1--1) and the Hamiltonian is approximated by - ~ x  
with 2~ the level splitting, i.e., 2~ -exp[ -4 (22) l /2 ] .  az has the meaning of 
the position operator. The complete Hamiltonian under consideration is 
then 

H= --eax| 1 + 1 | dk co(k) a+(k) a(k) 

+az|  f~ dk 2(k)Ea+(k) + a(k)] 7-haz| 1 (1.2) 

Here haz breaks the reflection symmetry of the potential by making the 
right well deeper (h>0) .  We are interested in the case h{0. {a+(k), 
a(k) I k s ~ }  is a scalar Bose field with commutation relation 
Ea(k), a+(k ' ) ]  = cS(k-k'), co(k) is the dispersion relation of the Bose field 
and 2(k) are the couplings. They enter only in the combination 

dk 2(k) 2 6(co(k) - co) = p(o) (1.3) d 
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As to be argued, physically, the proper choice is 

p(co) =/~co (1.4) 

for small co, fl > 0. 
The ground state energy of H, the zero point energy of the phonon 

field already subtracted, should be finite. This is ensured if 

dk2(k)Z/o)(k)= &op(~o) l/o<oo, dcop(co) < oo (1.5) 

This includes, in particular, the cases 

p(o))=/?e) ' ~ (1.6) 

for small co and 7 < 1. 
Equation (1.2) should be considered only as a formal expression with 

the obvious rigorization to be given below. Physically, the Bose field 
should be over E 3, may have several components, and the couplings could 
be directionally dependent. This would modify the definition of the fre- 
quency density p--the quantity which completely determines the physics of 
the two-level system. Since we discuss p in generality, all the mentioned 
alterations are automatically included. Also the expressions for the field 
expectations (cf. Section 11) could easily be modified as to include 
additional features of the Bose field. 

We want to study ground state correlations for H. Of particular 
interest are the static correlations of the particle, ( a z ) + ,  ( a x ) + ,  
( ( a y ) + = 0  always), and of the field, ( a ( f ) ) + ,  (a+(f) a(g))+ with 
a ( f ) = ~  dkf(k) a(k) and the time correlations (az(t) az)+, (ax(t) a x ) + ,  
etc. Here ( . )  + refers to the expectation in the ground state of H in the 
limit h ~ 0 and A(t)= eimAe -itH for some operator A. 

The way to attack this problem is implicitly present in the work of 
Yuval and Anderson (2) on the Kondo problem and, to our knowledge, has 
been spelled out clearly for the first time by Emery and Luther. (3) The idea 
is to represent e rH as a functional integral through the Feynman-Kac for- 
mula. e(ax-1) generates a spin flip process with flip rate e and 
co(k) a+(k)a(k) generates a harmonic oscillator (Ornstein-Uhlenbeck) 
process. Since the coupling to the field is linear, the Gaussian integration 
over the harmonic oscillator processes (---Bose field) can be carried out 
producing an effective interaction for the spin process. Ground state 
correlations are thereby reduced to Ising expectations in the infinite volume 
limit. The Ising model so obtained differs from the usual one by having 
spin configurations t ~  ~( t )=  +1 over [R rather than over Z. 
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In essence our paper puts the Emery-Luther observation in the 
appropriate mathematical context and then applies the modern technology 
of one-dimensional Ising models with long-range interactions to it. Most of 
the applications are fairly standard. Basically there are two complications: 

(i) Because the model is over • we have to control short-distance 
fluctuations. 

(ii) The free measure does not correspond to independent spins, but 
has the finite correlation length 1/2e. 

Our main result concerns the analysis of the phase diagram as a 
function of e, the level splitting, and of fl, the coupling strength to the field; 
cf. the schematic Fig. 1 for the case of the physical choice (1.4). We con- 
sider the ground state in the limit h ~0. In the upper left Qrz)+ = 0. This 
means that the particle is equally likely in either of the two wells. In the 
lower right ( a~ )+  > 0  which means that the particle is predominantly in 
the right well. For sufficiently strong coupling the particle cannot drag the 
phonon cloud along and the effective height of the potential barrier is 
infinite. This localization phenomenon is associated with an infinite number 
of low-momentum phonons. We establish rigorously a region where 
( a z )  + > 0  by using a corresponding result of Fr6hlich and Spencer ~4) on 
the Ising model with 1/r 2 interaction. Improved mean field bounds yield a 
region with (az )+ = 0  and a Gaussian domination of correlation 
functions. We establish also some results on static field expectations. 

../ / ?  

m,~=O 

/ / 

Fig. 1. 
small co). The shaded regions are established in this paper. - - -  
part of - -  is the result of Anderson, Yuval and Hamann. 15) 

I / 
Schematic form of the phase diagram for the interaction V(t)~ 1/t2(p(co)= fie) for 

is mean field and the lower 
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The unbroken line is the phase boundary obtained from variational 
calculations and the renormalization group analysis of Anderson, Yuval, 
and Hamann. (5) 

If ~ de) p(co) co 2<oo, then ( a : ) + = 0  always (e>0).  On the other 
hand if p(co)~co 1-'r 0 < 7 < 1 ,  then ( a : ) + > 0  for sufficiently strong 
coupling. In contrast to the case 7 = 0  the phase boundary reaches the 
origin as e = c/31/~ for small/3. 

The dynamics of the models of the form (1.2) is well understood in the 
weak coupling limit. (61 We believe that the technique explained in this 
paper offers a method also to analyze the intermediate and strong coupling 
regimes. 

2. S O M E  P H Y S I C A L  R E A L I Z A T I O N S  

The physics of the Hamiltonian (1.2) comes from three somewhat 
apart areas: solid state physics, quantum chemistry, and the attempt to 
manufacture experimentally quantum wave packets on macroscopic scales. 

(i) The solid state physics context is fairly obvious. We mentioned 
already the application to the Kondo effect in magnetic alloys. But also 
spin-phonon relaxation, the dynamics of paraelectric defects in solids and 
other phenomena are described by (1.2) (cf. Ref. 7 and references therein). 

(ii) Pfeifer in his thesis (81 attempts to explain the existence of chiral 
molecules as a superselection rule which originates in the ever present 
coupling of the molecule to the radiation field. The phenomenon is that 
certain molecules, as alanine, with a left-right symmetry are experimentally 
always found in either 0L(-I//left) or 0R(~l//right) and never in the ground 
state (1/x/2)(0c + OR). Furthermore 0L and OR are very stable against per- 
turbations. On the other hand other molecules, as, e.g., the isotopically 
substituted ammonia, whose molecular structure also has the left-right 
symmetry are found experimentally to be in their ground state. Such sub- 
stances are optically inactive. Pfeifer argues that this effect is due to the 
coupling of the molecule to the electromagnetic field. The two states 0L 
and 0R of the molecule are represented in the two level approximation. The 
A 2 term of the nonrelativistically quantized electromagnetic field is neglec- 
ted. In this approximation the molecule plus radiation field is described by 
the Hamiltonian (1.2). (or:)+ = 0  corresponds to an achiral molecule (the 
molecule tunnels between the two molecular states 0L and 0e,  the ground 
state is nondegenerate), whereas ( a : ) + > 0  corresponds to a chiral 
molecule. In Ref. 8 the Hamiltonian is analyzed as a Schr6dinger operator 
and very useful information is supplied. However, Pfeifer could not 
establish with rigor the existence of the spontaneous symmetry breaking. 
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(iii) Caldeira and Legget( 9'1~ posed the problem whether such a 
typical quantum effect as tunneling could be observed on a macroscopic 
scale. In contrast to the atomic scale, it would then be impossible, in prin- 
ciple, to isolate the system from its surroundings. A calculation based on an 
isolated system would predict physically incorrect results. Therefore 
Caldeira and Leggett were led to investigate tunneling in the presence of 
dissipation: The quantum particle moves in a potential with a local 
minimum, e.g. V(q)=  q2(1 -q )  with the large-q behavior not to be taken 
seriously, and is initially localized in the minimum. To represent dissipation 
the particle is coupled to a Bose field as in (1.2). One wants to compute the 
tunnel rate out of the local minimum when the Bose field is in its ground 
state (zero temperature). For this purpose Caldeira and Leggett use the 
"bounce trajectory" technique of Coleman. 11~'12) Their results triggered a 
number of further investigations. The tunnel rate at finite temperature is 
obtained in Ref. 13. If the external potential with a metastable minimum is 
replaced by a double-well potential, then one arrives at the problem under 
investigation in this paper. Various aspects of this problem are studied in 
Refs. 14-17. 

To what extent do physical considerations fix the frequency dis- 
tribution p[cf. (1.3)]? In the case of chiral molecules the Bose field is the 
electromagnetic field which has the dispersion relation co(k)=c Ik[. The 
coupling contains a factor Ikl 1/2 from the quantization rules of the elec- 
tromagnetic field and is proportional to the electric dipole matrix element 
between ~ L and ~O R. For the model Hamiltonian to be applicable at all this 
transition has to be allowed. Therefore the matrix element tends to a con- 
stant ~0  as k ~ 0 and decreases rapidly for large Ikl because of the spatial 
localization of ~L and ~kR. Altogether this yields p(co)~co for small co(cf. 
Ref. 8 for details). 

For quantum tunneling with dissipation Caldeira and Leggett argue at 
great length that in order to have linear damping in the classical limit one 
must have p(co)~co for small co (cf. Ref. 181. For the Kondo effect already 
Anderson et al. argued that p(co),-~co which translates into a 1It 2 decrease 
for the interaction of the Ising model. In other solid state physics 
applications it does not seem to have been recognized that the low-fre- 
quency behavior of p determines essential features of the dynamics of the 
two-level system. 

3. GROUND STATE CORRELATIONS AND ISING 
EXPECTATIONS/THE ISING MODEL OVER 

We construct the ground state for H in (1.2) by first restricting the 
phonon field to the finite box I--L, L]. This makes the k spectrum dis- 
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crete. Then thermal expectations at finite temperature are well defined. 
Subsequently the high-frequency cut off is removed and the box L ~ oo. 
The ground state is obtained in the limit of zero temperature. This is the 
physically correct order of limits. 

We assume that co and 2 are measurable functions satisfying 

~o(k)~>O, fdk;~(k)~<oo, fclk;~(k)~/e)(k)<~ (3.1) 

It is convenient to introduce the square of the coupling at frequency co by 

p(de)) = f, ak )~(k) ~ 6(e)(~)- e)) de) (1.3) 

p(de))  is a measure on (0, oo). If it has a density we denote it as p(e)) de). 
From (3.1) we conclude that 

Let x(.)  be standard Brownian motion. P x ( d x ( ' ) )  is its path measure 
on C([0, oo), E) with x (0 )=x .  Let a( . )  be a spin flip process, a ( t ) =  +1. 
a ( ' )  changes sign after an exponential holding time with mean 1/e. The flip 
rate is e. e -~t(l - ~ ) i s  the transition probability of a(-). We denote the path 
measure with or(0)= a by ~ ( d a ( . ) ) .  It is concentrated on piecewise con- 
stant paths taking values + 1. In (1.2) we replace the integral by a finite 
sum j = 1,..., n and require co(kj) > 0. Then by the standard Feynman-Kac 
construction the integral kernel of e -TH has the functional integral 
representation 

e Tn(a, x l  ,..., xn I a', X'l,..., x'n) dx ' l " "dx '~  

j = l  

j = l  

where the potential is given by 

V(~, x~,..., xo)=~ 
j - - I  

+ a2(k j ) [2co(k j ) ]  1/2 xj  - ha]  (3.4) 

z(A) denotes the indicator function of the set A. 
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In the cut-off Hamiltonian we define thermal expectations. For the 
sake of concreteness we choose the expectation value of az, i.e., 

( a ~ ) r . = t r a ~ e  T./tre rH (3.5) 

with e - r .  given by (3.3). We perform the Gaussian integration over H P. 
This yields 

(~r:)r,,, = Z (T ,  n) ' f ~" #;(da(')) ~6~(r ) 
cr 

[if: fo ] x exp ~ dt ds vr( I t - s l )~r( t )a(s )+h dta(t) (3.6) 

with 

V[(t) = L 2(kJ) 2 (e-~(kJ)' + e ~(~j)(r '))/(1 - e -~~ 
j = l  

(3.7) 

and Z(T, n) the obvious normalization. 
For the box quantization of the phonon field with periodic boundary 

conditions k j=  rcj/L, j =  +_1, +_2 ..... Then 2(kj) 2 in (3.4) should be replaced 
by (~/L) 1/2 Z(kj). In (3.6) and (3.7) we let n --* oo and subsequently L ~ oo. 
By our assumptions the Riemann sum (3.7) approximates the integral and 
we obtain the thermal expectation of ~ in the infinite-volume limit, 
L ~ o o ,  as 

o" 

x exp dt ds vT([t--s[)a(t)~(s)+h dt~(t) (3.8) 

with 

v T ( t )  = f p(&o)(e ~o, + e-~~ _ e ~v) (3.9) 

We note that from above, by dominated convergence, 

lim VT(t)= V(t) 
T ~  

(3.10) 

with 

V(t) = f p(dm) e -~1,I (3.ll) 
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Clearly V is decreasing for t >~ 0 and by our assumptions 

0 <~ V(t) <~ V(O) < co, f dt V(t) < co (3.12) 

To obtain ground state expectations we have to take the limit T-* co. 
We denote the ground state by ( . ) ( . . . ) .  If necessary, we exhibit in the 
argument its dependence on e, h, V [i.e., on p(dco)]. The limits h,L 0 and 
hi"0 are distinguished as ( - )+ ( . - - )  and ( - ) _ ( ' - . ) .  

It is clear that (3.8) defines an Ising model over ~ and that T ~  co 
corresponds to its infinite volume limit. We first define the Ising model in 
its own right. Because VT>~ 0 the interaction is ferromagnetic. It may be of 
long range, however. As the Ising model is over ~, we cannot properly 
refer to known theorems. Since in the following section we will show the 
validity of Griffiths, FKG, Lebowitz, and other inequalities for this model, 
we feel entitled to be a bit sloppy here and not to repeat the proofs existing 
for the Ising model over Z. 

We define the +state of the Ising model, since this is the state of 
interest. The free measure is given by the spin flip process: We place 2n 
points in the interval [ - T ,  T], - T < q l  < ""  <q2~< T. The 
corresponding spin configuration a(t) equals to 1 for qzj-2 ~< t < q2/_ 1 and 
equals to - 1 for q2j- 1 ~< t < qzj, J = 1, 2 ..... n + 1 with qo = -co ,  q2, + ~ = co. 
This spin configuration carries the weight one for n = 0 and ~2~ dq~ . . .  d q 2  n 

for n = 1, 2 ..... which defines the free spin measure/~-.+ (d(')) with +boun-  
dary conditions. Other boundary conditions are constructed correspon- 
dingly. The full finite volume measure is 

( . )  +,r= Z +(T)-'  f#~ .+  (d~r(-))exp { - � 8 9  f dtds V( t - s )[1-~( t )~(s )]} ( . )  

(3.13) 

The limit T-* co defines the probability measure ( . ) + ,  the +state, on 
~ ( ~ ,  { -  1, 1})= 9 ,  the space of piecewise constant functions taken values 
_+ 1. ( . )  + is translation invariant and mixing with respect to translations. 

The connection with the quantum mechanical ground state is given by 

( a ; )  + = ( a (0 ) )  + (3.14) 

To see this we define the equilibrium (Gibbs) state with magnetic field 
h by adding -h~dta( t )  to the interaction. For h-~0 the infinite-volume 
limit exists and is independent of the boundary conditions. (26) Furthermore 
( - )  + is the limit h J, 0 of ( ' ) ( h ) .  Let aA = 1--[7= I a(tj) and L be such that 
(; e [ - L ,  L]  for all j. The quantum mechanical expectation ( a z )  at finite 

822/4I/3-4-4 
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temperature I / 2 T  equals the expectation of a(0) in the Gibbs state 
(')2T, per(h) with interaction potential V 2r and with periodic boundary 
conditions. Let T > L .  We impose an infinite external field in 
[ -  T, - L ]  w [L, T]. Thereby (oA)  is increased. We keep L fixed and let 
T ~  oo. Then by (3.10) ( aA)  converges to ( a A ) L , + ( h ) ,  where now the 
Gibbs state is over I - L ,  L]  and refers to the potential V with +boundary 
conditions as defined above. Therefore 

lira sup(oA )2T, per(h) ~ (0" A )L,+ (h) 
T ~ o : 3  

(3.15) 

and similarly for the - state, 

lim inf(oA)2T, per(h)/> (0"A)c, (h) 
T ~ c z 3  

(3.16) 

F o r L ~ o e  a n d h r  

(Oz ) (h )  = (a(0) ) (h)  (3.17) 

by uniqueness, which as h $0 yields (3.14). 
Also other ground state correlations of the two-level system may be 

expressed as Ising expectations. For ax there has to be a spin flip at t = 0. 
This yields 

11  
(a : , )  + = l im-- : - - -  [-(a(0) a ( t ) )  - 1 ] (3.18) 

t+o 2e t + 

( o y )  + = 0, since the reduced density matrix of the two-level system is real. 
For dynamical correlations let us take as an example ( a z ( t ) e z ) + .  In 

the cut-off Hamiltonian one considers 

tr e (T-,)naze-tHaz/t r e Tn = f v~y)(d2) e- )"  (3.19) 

for 0 ~< t ~< T with some spectral (probability) measure V(z~r)(d2) on the real 
line. From the functional integral representation we know that the left- 
hand side of (3.19) has a limit as T ~  oo for every t>~0. Since the family of 
functions {e at I t>~0} is convergence determining, we conclude that 
v~r~)(d2) has the weak limit vzz(d2), concentrated on [0, oo) by the KMS 
condition, and that therefore the two point function has the spectral 
representation 

fo ~ e-hi ' l=  ( a ( 0 ) o ( t ) ) +  (3.20) 
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The dynamical correlation (~ ( t )~ r~ )  for finite temperature is defined as 

tr e - r n e i ' n a ~ e  -i 'n~r=/tr e - r n  = f v ( f ) ( d 2 )  e -i~, (3.21) 

Since v~r)(d2) tends to vz~(d2) as T---, oo, we finally conclude that in the 
ground state 

;o ( a z ( t )  a ~ )  + = v~(do9)  e -i~~ (3.22) 

If the system is initially in the ground state and is for t > 0 subject to a 
weak field ei~ then for large t, in linear response, 

(a~(t))--(a~)~Z(co)ei~~ (3.23) 

The real and imaginary part of the response function Z(co) is given by 

"~'(o)) = v=(d)o)[2o) / (22  - co2)] 
(3.24) 

z"(~o) do) = z({~o > 0 }) ~ ( d ~ o )  - Z({~o < 0})  ~ . (  - d~,) 

The usual sum rules (cf., e.g., Ref. 18) are trivially satisfied. 
For the other dynamical correlations we observe that 

[ H ,  a~] = [ - e ~ r x ,  a~] = 2iSay (3.25) 

Therefore the dynamical correlations for ay are obtained from the spectral 
measures corresponding to a~, e.g., 

fo ( a , ( t )  ay )  + --- (1/2e) 2 v~(dog)  co2e -~~ (3.26) 

For  the a x correlation we use the argument leading to (3.18). For  example, 

where for t > 0 

(o.x(t) ax )  + = vx~ (&o)  e i~.~, (3.27) 

fo ~  e ~'---limlim [ 1 / ( 2 e ) 2  ss '] 
slO s'LO 

x E (~r(o) ~(s) o (0  ~ r ( t + s ' ) ) +  - ( ~ ( t )  ~ ( t + s ' ) ) .  - (~r(o) ~r(s))+ + 1] 
(3.28) 
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If we define the joint spectral measure for t~, t2, t3/> 0 by 

then 

fo'V(d091, d092, d093) exp[-(091 + + t3)] t l  09 2 t2 093 

= (a(0) a ( t l ) a ( t l +  t2) a(tl + t2+t3))+ (3.29) 

Vxx(d09) = (1/2e) 2 v(d091, d09, d092) 0)10) 2 (3.30) 

In conclusion, all static and dynamic ground state correlations of the 
two-level system are expressible through correlation functions of the Ising 
model over ~. We will see in Section 1 1 that this is also the case for field 
expectations. 

We argued in Section 2 that the physics of the model Hamiltonian H 
forces p(09)~09 for small 09, which implies 

V(t)~ 1/t 2 (3.31) 

for large t. As is well known for the Ising model over 7/ the lit 2 decay of 
the interaction is exactly on the borderline for the existence of a phase 
transition. 12~ First of all, the pair interaction has to be integrable for the 
infinite-volume limit to exist. We imposed this in (3.1). If, over Z, the decay 
is slower than lit 2, in fact if the pair interaction satisfies 

V(t) >~ c(log log(ltl + 3))/(t 2 + 1) (3.32) 

Dyson ~2~'22) established a nonzero spontaneous magnetization for suf- 
ficiently low temperatures. He used the hierarchical model as comparison. 
If the decay is faster than lit 2, in fact if 

N 

lim (logN) -~/2 ~ nV(n)=O (3.33) 
N~o~3 n = l  

then the spontaneous magnetization is zero at any interaction strength and 
( . ) +  = (.)_.~23 25) For a decay exactly as 1/t 2 Fr6hlich and Spencer ~4) 
prove by a sophisticated entropy-energy argument the existence of a non- 
zero spontaneous magnetization for sufficiently low temperatures. 

One of our aims is to obtain the corresponding results for the Ising 
model over ~ with emphasis on the border line case lit 2. We discuss the 
phase diagram in dependence on the natural physical parameters: The 
coupling strength /~ and the level splitting 2 e ( -  twice the spin flip density 
of the free measure). 
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4. LATTICE A P P R O X I M A T I O N  A N D  INEQUALIT IES  

One of the helpful facts about ferromagnetic Ising models are 
inequalities. In general, the natural way to prove them is through a lattice 
approximation of the continuum model which we do first. 

We approximate the free measure of the continuum model by a 
nearest-neighbor Ising model with lattice spacing b and coupling J(b). To 
each lattice configuration {a j} we associate a continuum spin configuration 
by a ( t ) = a j  for (j-�89 This has the advantage of all 
measures being defined on the same space. The free measure of the con- 
tinuum model has the two-point function (a(t)a(O))=e 2~l,j. Since the 
pair correlation of the lattice model 

(aoaja) = [tanh J (b ) ]  Ijal (4.1) 

j eZ ,  for it to approximate the continuum model the nearest-neighbor 
coupling has to diverge as J ( b ) =  �89 log be. For each b this defines then a 
measure ( .  ,,(6) on ~ and ( .  \(a) converges weakly to the free measure of / free / free 

the continuum model as b ~ O. 
We consider now the finite interval [ - T ,  T] and + (or some other) 

boundary conditions. The Gibbs measure with interaction is approximated 
by an Ising model with lattice spacing 6, + boundary conditions outside 
the interval [ - T / 6 ,  T/6] and interaction 

�89 ~ (1-a;aj)+�89 v(ci-j) b)(1-aiaj) (4.2) 
i , j , ] i  j] = 1 i , j  

Then the Ising measure ( .  ,~(a) converges weakly to ( ' ) T , + ,  the Gibbs 
measure with interaction of the continuum model. In particular the 
correlation functions converge, 

Jim ~ a ( t j ) )  = a (4.3) 
1 / T , +  1 T , +  

It is now obvious how inequalities 2 are proved: Whenever an 
inequality holds for finite b, it also holds for the limit measure-- the one of 
interest. There is one proviso, however: Some inequalities, such as, e.g., 
Simon's inequality, (2s~ contain explicitly the pair potential which diverges 
logarithmically as b ~ 0 and therefore renders the inequality useless as it 
stands. 

The diverging nearest-neighbor coupling teaches us that, in general, it 
is not a promising strategy for showing some specific property of the con- 

2 For a summary see Ref. 27. 
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tinuum model to first prove it in the lattice approximation hoping for 
enough uniformity in the strength of the nearest-neighbor coupling. 

It should be remarked that probabilistically our construction is very 
well known: It corresponds to the approximation of the Poisson process by 
a two-state Markov chain in the limit of rare events. 

5. T H E  E Q U I V A L E N T  S Y S T E M  OF C H A R G E S  

As exploited already by Yuval and Anderson we may reformulate the 
Ising model as a system of classical point particles. The particles are 
located at the points of spin flips, - T <  ql "'" < q2n < T. Their interaction 
energy equals, in the case of plus boundary conditions, 

-~ ~ dt ds V(t - s) + b.c. 
k ~ j = l  k 

k/j  = even/odd 

where 

21l 

(--1)/-kU(lqj--qk[ ) + 2nU(O ) 
j ~ k = l  

2n 

+ lim ~ [ ( - 1 ) J U ( q j + q ) + ( - - 1 ) J + l U ( q - q j ) ]  
q ~ o o  j = l  

(5.1) 

d 2 

dt---- 7 U(t)= V(t) (5.2) 

for t > 0. The energy (5.1) does not depend on the constants of integration 
of (5.2). 

There are two equivalent possibilities to interpret (5.1):(5.1) 
corresponds to a system of classical particles with charges + 1 constrained 
to alternate. The fugacity of the gas is ee v(o) and the interaction energy 
for a pair of charges is eje~ U(Iqj-qkl)  with charges ej = _+ 1. Alternatively, 
we may think of (5.1) as a system of classical uncharged particles. The 
fugacity is ee-v(o), but the interaction is many body of the form 

2n 

( --1)N([qJ'q~])U(lqj-- qk[ ) (5.3) 
j ~ k = l  

where N([a, b]) denotes the number of particles in the interval [a, b]. 
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6. THE E Q U I V A L E N T  CLASSICAL R A N D O M  NOISE 

In the Ising model the phonon field entered only through the effective 
interaction. The same interaction could also be obtained from the classical 
noise ~(t) with ~(-) Gaussian, ( ~ ( t ) ) = 0  and (~( t )~ (s ) )=  V(t-s). The 
random Hamiltonian is then 

H(t) = -ecr x - h~r, + r a, (6.1) 

Then, e.g., 

(a(O')(h'=lLmo ~-Itr{exp[-f~ 

x exp[-I:dtH(t)]})/~<tr{exp[-S_rdtH(t)]} ) (6.2) 

where e x p [ - S ' " ]  is understood as time ordered exponential and E is the 
average over r The averaging over the noise follows the "annealed" 
prescription. Dynamically of interest are nonthermal, time-dependent 
expectations as, e.g. 

E ( O l exp [i Is ds H(s)] ~r, exp [ - i  ~ ds H(s)] O ) (6.3) 

which may be expressed, through analytic continuation, as an expectation 
in the Ising model. Of course, the physics of the two-level atom coupled to 
the phonon field and of the Hamiltonian (6.1) are very different. Only cer- 
tain expectation values are the same. 

The example shows that statistical mechanics methods may be used to 
study the effect of noise on quantum systems. The Hamiltonian (6.t) is an 
approximation to the noisy Hamiltonian --1A + V~.(q)+ ~(t)q. Fr6hlich 
and Pillet (29) investigated the much more complicated case of 
- �89 + cos q + ~(t) q. 

7. A V A R I A T I O N A L  C A L C U L A T I O N  

We analyze a variational upper bound for the free energy, i.e., for the 
ground state energy of the quantum system. 

The partition function for finite volume is 

Z(T) = (cosh 2T) ' f/J~(da(')) 

(7.1) 
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As a comparison state we choose the free measure with spin flip density )~ 
and magnetic field ~. Then by Jensen's inequality 

Z(T) >1 tr {exp[2T()~cr x + ~rz) ] } exp[ (n)T,  free(/~, O{) 1og(~/2) 

- �89 f dt ds V( t - s ) [1  - (a(t) a(s)>r, frr ~)] 

+ ( h - a )  f dt(a(t))r ,  free(2, ~)] (7.2) 

with n the number of spin flips. We evaluate the correlation functions in the 
limit T-+ o0. It is convenient to introduce polar coordinates 2 = r cos 8 
and ~ = r sin 8 ,  r >~ 0, 0 ~< O ~< ~/2. Then the free energy, f ( f ,  e, h), of the 
Ising model is bounded by 

f ( f ,  e, h) ~ min 
r~>0,0~<cosO~<l 

x { - r ( c o s S ) Z [ l o g ( e / r c o s S ) + l ] + ( c o s 8 ) Z f g ( r ) - h s i n S }  (7.3) 

with 
/. 

g(r) = 2r J p(do~)E~o(~o + 2r)] - l  (7.4) 

We discuss the phase diagram for h = 0 associated with the upper 
bound (7.3). The stationarity conditions are 

r cos 8 = ee-~g'~r) (7.5) 

,] r cos 0 = ~ exp - - fg( r  (7.6) 
f 

If (7.5), (7.6) allow a solution in the interior of the domain, i.e., 
0 < cos 0 < 1, then it has to lie on the circle with radius r satisfying 

1 - g'(r)]  (7.7) ~ = f  [ !  g(r) 

At such a stationary point the free energy equals 

- �89 O) 2 (7.8) 

On the boundary, O = 0, the free energy is 

-rflog(~/r) + 1] + fig(r) (7.9) 
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The stationarity condition is 

r=ee ~g'(r) (7.10) 

with 

g'(r) = 2 f p(do))(co + 2r)-2 (7.11) 

At such a stationary point the free energy equals 

r {fl [!  g(r)-  g '(r)]-  l } (7.12) 

Note that by dominated convergence g(0)=  0. 
Finally we need the directional derivative, - d / d  cos O, in the O direc- 

tion at O = 0 .  It is given by -2{-r[log(e/r)+flg(r)]}. At the point 
satisfying (7.10) it is then 

, 1 
- 2r {fl I !  g(r)-  g (r)]--~} (7.13) 

Now the overall picture is fairly clear. We fix /~ and discuss the 
location of the absolute minimum, (rm, ~)m), as a function of e. 

The function 

t g(r) - g'(r) = ~ p(dco) 4r (7.14) 
r c~(co + 2r) 2 

decreases to zero for large r. Therefore for e ~ oe, in view of (7.8), (7.12), 
and (7.13), the minimum is at (rm, 0), r,, large. Let rc be the largest value at 
which (7.7) holds. If (7.7) cannot be satisfied, then Om = 0 always, since by 
(7.13) we have a boundary minimum and since by (7.12) its free energy is 
always smaller than the one at r = 0. The free energy depends smoothly on 

and the spontaneous magnetization remains zero. 
Assume then r,. > 0 and denote the corresponding value of e by ec. For 

~> ec the minimum has to be on the boundary according to the previous 
argument. As r<rc, O = 0 ,  the derivative (7.13) changes sign and the 
minimum has to lie at (rm=r c, 6~m>0). e,. is a critical point. From (7.3) 
the spontaneous magnetization m* = - s in  O. Inserting we obtain for e ~< G 

m* = [1 -- (s/G.)2] 1/2 (7.15) 

The phase transition is second order of mean field type. 
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The phase boundary is 

e , .  = roe [~g'(rc) (7.16) 

with r, the largest solution to (7.7). For large/3 

~,. = 2/3 f p(&o) o9-1 (7.17) 

This is the usual mean field solution. For small /3 the phase boundary 
depends on the asymptotic decay of V(t). If 

f p(dog)~o-2 < ~ (7.18) 

then ( I / r ) g ( r ) - g ' ( r )  is bounded and tends to zero as r ~ 0 .  Therefore 
there is a minimal /3* for which (7.7) is satisfied and rc > 0 at that point. 
Hence ec(fl*) > 0. For fl </3* the free energy is smooth. For 0 < g < ~c(/3") 
the spontaneous magnetization jumps as a function of/3. If 

1 
- g ( r ) - g ' ( r ) ~  as r ~ 0  (7.19) 
r 

then rc--* 0 as ~ ~ 0. The phase boundary reaches the point ec = 0,/3c = 0. 
If p(co)----~o 1 ~, 0 < 7 <  1, then ~c~/3 ~/~ for small/3. V(t)~-t -2 is exactly on 
the borderline. In this case ~, tends to zero continuously, but reaches zero 
at some/3*> 0. 

A schematic phase diagram is plotted in Fig. 2. The variational bound 

m% 0 / 
/ ///// m~>O 

--.., 
f 

Fig. 2. Phase  d i ag ram accord ing  to the var ia t iona l  bound  for the in terac t ion  V(t)~t 2+~. 
The left h a n d  curve  cor responds  to 0 < 7 < 1, the midd le  curve to 7 = 0 and  the r ight  hand  

curve to 7 < 0. 
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captures some features of the actual phase diagram. But, as expected, it 
cannot reproduce correctly the difference between the t 2 and faster than 
t -  2 decay. 

8. ABSENCE OF PHASE TRANSITION 

If 

f p(d~o)r < oo (8.1) 

then the spontaneous magnetization is zero and the infinite-volume Gibbs 
measure is independent of the choice of the boundary conditions (uni- 
queness of the Gibbs measure). This will be proved in Section 10, where we 
extend the energy-entropy argument of Simon and Sokal (3~ to the present 
situation. Presumably the slightly sharper bound (3.33) could also be 
generalized. If (8.1) is satisfied, the quantum particle still tunnels between 
the two wells even when strongly coupled to the phonon field. 

(8.1) yields no information about the physically relevant couplings. 
One general method to delineate the one phase region are mean field 
bounds. We present a slightly improved version of Ref. 31. 

The interaction is split up into a short-range and long-range part, 

v ( t ) =  v,(t)+ v,(t) 

both positive, and we define the interaction 

Vx(t)= Vs(t)+XVt(t) 

(8.2) 

(8.3) 

Let ( . ) x  be the Gibbs measure with interaction flV~.(t) and free boundary 
conditions. As before the free measure has the spin flip density s. Then 

d 
2Y <o-(0) o-(t) >~ = - s ' ) [  <o-(0) 

- <o-(o),~(t)>~<o-(s) o-(s')>A 

<. p f ds f as' V,(s- ~.')<~(0) o(s) >~<a(t) O'(Sr) >2 (8.4) 

by Lebowitz' inequality. (32) (a(O)a(t))~ is then bounded by the solution of 
the differential equation corresponding to (8.4) with initial conditions 
(a(O) a(t) >~=o = (a(O) a(t) >T(flV,). Let 

1 I/2 f dt eik'(a(O) a(t)>(flVs) (8.5) a ( k ) -  (2~--~ 
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Since 12t(k ) and ~(k) take their supremum at k = 0, the condition for the 
solution of the differential equation corresponding to (8.4) to stay bounded 
for 0 ~< 2 ~< 1 yields, in the infinite-volume limit, 

/3[f dt V,(t)]Idt(a(O,a(t))(/3Vs)<l (8.6) 

If (8.6) holds, then 

(a(0)  ~ ( t ) ) ( / 3 V ) < ~  f dk e ikt~(k)[1 -2z~/3 ~',(k)~(k)] -~ 

- (a(O) a(t)~ (8.7) 

Moreover by the Gaussian inequality [33, 34, 35][36] ,  

p a i r i n g s  ~ A 

E H <(~Y(ti) G(tj)~ 
p a i r i n g s  e A 

(8.8) 

i.e., provided (8.6) is satisfied, the correlation functions of ( . ) ( /3V) are 
bounded by those of the Gaussian measure with mean zero and covariance 
(a(0)  a(t)~. In particular, the spontaneous magnetization is zero and the 
infinite-volume limit is independent of the boundary conditions (cf. Ref. 3 1 
for details). 

The simplest way to use (8.6) is the choice Vs=0.  Then 
( a (0) a(t) ) (/3 Vs) = exp ( - 2e [ t l ) and (8.6) yields the mean field criterion 

2/3 f p(dco) e) - '  < e (8.9) 

for the absence of a phase transition. 
The upper bound (8.7) can be supplemented by a lower one. By 

Griffiths,(37 39) 

(~r(0) a(t) )(flV) >~ cV(t) (8.10) 

In particular for V(t)~t-2+~,O<~7<l, in the region defined by (8.9), 
(8.7), and (8.10) imply the upper and lower bounds 

c (I+t2-7)-l<~(a(t)a(O))<~c+(l+t 2 7)-1 (8.11) 

Equation (8.9) is not a sharp bound on the one phase region. One 
expects a phase diagram as Fig. 2 with the line corresponding to t -2 +~, 
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7 < 0, omitted. To proceed in this direction a less trivial short range part of 
the potential has to be used. The only computationally accessible case, 
besides V~=0, seems to be Vs(t)=2 2 e x p ( - ~  Ire). This corresponds to the 
one-fermion-one-boson problem 

H =  -eax+7a+ a+ 2a~(a + +a) (8.12) 

about which rather detailed information is available. (4~ If, in the case 
V( t ) ~ t  2, we use it in (8.6), then the upper bound on the phase transition 
drops below the mean field bound as expected. However, even optimizing 
the exponential, yields only a somewhat smaller, but still finite, slope at 
/~=0. 

A more sophisticated approach is the use of a low-density expansion. 
We define 

We map the system with interaction Vs onto the system of charges with 
potential Us (cf. Section 5). The constants of integration are chosen such 
that Us has range s. We assume e to be small. Then the particles are far 
(i.e.,~ l/e) apart and it is natural to use a low-density expansion. For a 
classical continuous particle system with pair potential V and fugaeity z the 
convergence radius of the low-density expansion is 

fl ze~B rl Vrll < 1/e (8.14) 

with B the stability constant, t4~'42) In our case the potential is many body 
and it is not clear whether (8.14) still holds. In the spirit that there is no 
hope to establish a larger convergence radius, let us assume (8.14). The 
fugacity is 

z=ee  ~vs~o) (8.15) 

The stability bound is a consequence of the positivity of the Ising interac- 
tion which implies the stability constant B=Us(0).  If V ( t ) ~ t  -2+~, 
0~<7< 1, then FlVslll~s 1+~ for large s and we obtain from (8.14) 

fl~s I +7 <. c (8.16) 

This means that the low-density expansion should converge provided 
the range of the potential is of the order of (7 = 0) or less than (y > 0) the 
mean distance between particles. We evaluate ~dt(a(O) a(t))(flVs) 
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approximately by setting Us = 0 and keeping only the change in fugacity 
due to Us(0). Then 

1/~s /3, 7 = 0 

1/eexp - T s  ~ , 0 < 7 < 1  

within the radius of convergence defined by (8.16). Inserting this into the 
criterion (8.6) yields, choosing s maximal, 

V ( ~ ] 1  2 
e>  exp [_c \ ~ -  l J  l~ ' 7 = 0  (8.18) 

C+fl 1/~, 0 < 7 <  1 

/3 small, for the absence of phase transition. In Section 9 we will show, 
using the hierarchical model as a lower bound, that for 

e < c  /~l/r, 0 < 7 <  1 (8.19) 

the Ising model has a nonzero spontaneous magnetization. 
In order to pin down the phase boundary for small /~ in the case 

0 < 7 < 1, it may be of some interest to actually prove the convergence of 
the low-density expansion. We did not push this approach because it fails 
to give the conventional picture for the border line t -2. We pose the 
following problem: In the usual Ising model over 7/ with l i t  2 interaction 
show that there exist a/~* > 0 such that for/~ </~* there is no phase trans- 
ition no matter how strong the nearest-neighbor coupling. 

9. EXISTENCE OF PHASE TRANSITION 

We establish a nonzero spontaneous magnetization in the cases where 
the interaction decays as t-2 +~, 0 ~< 7 < 1. The existence of a phase trans- 
ition for the physically relevant t 2 interaction is in a way the least obvious 
result of our paper and we formulate it as follows. 

T h e o r e m  1. If the interaction V ( t ) ~ t  2 for large t [in the sense 
that limt~ ~ t2V( t )= c >  O] and if/~ is sufficiently large, then 

(o(0) )  +(/~V) > 0 (9.1) 

We show that (a(O))+ is bounded below by the spontaneous 
magnetization of the usual Ising model with 1/r 2 interaction, which is 
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strictly positive provided 3 is large enough by a result of Fr6hlich and 
Spencer. ~4) 

Proof. The proof consists of two steps. We first average over short 
distance scales and decouple the free measure. We then use Wells' 
inequality. 

Stop 1. We choose a lattice spacing 6 and a maximal lower bound 
for the potential V such that f" is constant on the squares j6 <~ s < (j + 1 ) 3, 
i6 ~< t < (i + 1) 6 and satisfies 

V(t - s) >>. V(t, s) = ~/j2 
f o r j 6 < . s , t < ( j + l ) 3  

for j 6 < . s < ( j +  l)6, i6<. t<(i+ l)6, i ~ j  

(9.2) 

i, j~7/.  c~ depends on 6 as ct~ V(0) for small 6 and c ~ 6  2 for large 6. Let 

1 ~(J+ 1/2)6 
mj = ~ ~J 1/2)~ dt a(t) (9.3) 

Then Imjl ~< 1. We set T =  ( L -  1/2) 6 and ms.= 1 for IJl ~ L ( + boundary 
conditions). By Griffiths, 

(mo)r,+(flV)>/ (mo)  r.+ (fl~') (9.4) 

Here the Gibbs measure ( ' ) v , +  (fiE) can be regarded as defined over the 
lattice 7/. Its interaction is then 

-1fl~62 ~ l i - j l - 2 m i m j +  ~ fitc262m~+b.c. (9.5) 
2 

i ~ j  I J[ < L 
l i l ,  [Jl < L 

and its free measure is the joint distribution of the mjs under the spin flip 
measure #~- + (da). We recall the lattice approximation of the free measure 
described in Section 4. In this approximation we suppress the couplings 
across the points ( j +  �89 6, - L  ~ j <  L. This further decreases the expec- 
tation of m 0 and therefore 

(mo)  v, + (fl V) >~ (mo)  L. + ,u(C~62fl) (9.6) 

Here (.)L.+,~,(fl) has the interaction 

~ l i - j l -2mimj+b.c .  (9.7) 
i ~ , j  

and as free measure a product of single site measures #. 
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The characteristic function of the single site measure #(dm) is given by 

f #(dm) = exp a ( t ) +  tc a(t) (9.8) 
- 1  _1 ) /  [O,1],e6 

") Eo, l 1,~6 refers to the expectation in the spin flip measure with free boun- 
dary conditions and density e6. We scaled the interval [0, 6] to the unit 
interval here. We may de-Gaussian the square and use again the spin 
operators. Then 

fl ; #(dm)e~.m=Z 1 d~e-~2/4 
1 

x ~ e x p [ e 6 ~ x + ( ~ c ~ + 2 ) ~ ] ( ~  I ~') (9.9) 

Clearly, #(din) is even. 
We note the limits: If ~ ~ O, then 

I~(dm)=�89 l ) + 6 ( m - 1 ) ] ,  f #(dm)m2--* l (9.10) 

and if 6 ~ ~ ,  then 

#(dm)=(~6/2~)l/2exp(-mZe6/2), f #(dm)m2 ~ l/e6 (9.11) 

Step 2. Wells made the following observation(43,44): Let # be an 
even single site measure and let a > 0 be such that 

f #(d~)(a 2 - a2) n >~ 0 (9.12) 

for all n =0,  1,.... A sufficient condition for (9.12) to hold is 

#([0, a])  ~< 2#([x/2 a, ~ ) )  (9.13) 

Let ( . ) + , u  be the Gibbs state for a general ferromagnetic interaction with 
single site measure # and + boundary conditions and let ( ' ) + , a  be the 
Gibbs state for the same interaction but with # replaced by 
�89 + a) + 6(a - a)] (Ising model). Then 
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Let ( ' ) C ,  + (fl) be the Ising model ( +  1) with interaction f l ] i - j 1 - 2  and 
+ boundary conditions. Let a be such that (9.12) is satisfied with/~ defined 
by (9.8). Then 

2 ") (mo)T,+(fiV)>~ ( a o ) c , + ( a  fi-Tfl) (9.15) 

From Ref. 4 we know that ( a o ) + ( f i ) > 0  for f l>fl ,  with some fl~ large 
enough. Therefore we conclude that 

provided 

( a ( 0 ) )  + (flV) > 0 (9.16) 

a262c~fl > fl,. (9.17) 

From the construction it is clear that (9.17) can be achieved provided fl is 
large enough. | 

The reader may be curious about the shape of the lower bound on 
ec(fl). From (9.10), (9.11) we deduce that a2~ 1 as 6--+0 and a 2~ 1/e6 as 
6 ~ oe. We also know that ~ c  as 6 ~ 0 and aN 1/6 2 as 6 --, oe. We insert 
in (9.17) and optimize with respect to 6. The resulting curve is qualitively 
similar to the one of Fig. 1. For  fi large it is linear. It drops to zero at some 
finite value of fl, however enters there with zero slope. 

Our technique can also be applied to potentials decaying as t 2+~, 
0 < ~ < 1 .  After Step 1 we use the hierarchical model as lower 
bound.  (21'45'46) This establishes a nonzero spontaneous magnetization for fl 
large enough. The condition to be satisfied is again (9.17) with 
a2=~#(dm)m 2 and tic a constant coming from the analysis of the 
hierarchical model. If we again optimize (9.17) with respect to (5, we obtain 
a lower bound on ec(fi) which is linear for large fi and drops to zero as fll/~ 
for fl-~0. 

Note that as e ~ 0 the Gibbs measure ( . ) ( f lV ,  e) tends to the measure 
giving weight 1/2 to the configurations a ( t ) =  1 and a ( t ) = - 1  for all t. 
Therefore the line e = 0 corresponds to a zero temperature transition. 

10. T H E  T H O U L E S S  EFFECT 

The Thouless effect refers to the phenomenon that for the Ising model 
with 1/t 2 interaction the spontaneous magnetization jumps at tic. However, 
the transition is not first order, since the correlation length diverges for 
fl ~ tic. On the basis of a renormalization group analysis and of numerical 
data it is predicted that at fl,. the two point function decays as 1/log t for 
large t. (47) We want to apply the technique of Simon and Sokal (3~ to our 

822/41/3-4-5 



414 Spohn and Dfimcke 

model. It provides a simple proof of zero spontaneous magnetization, if 
dt V( t ) t<  ov and e >0.  As before, the difficulty in the extension is to 

properly deal with the fact that the free measure is not a product measure. 
We consider the finite system I - T ,  T]. Let A be an interval, 

A c [ - T + 6 ,  T - 6 ] ,  A = [ a , b ] .  We define 8 ~ A = S A = [ a - & , a ] w  
[b, b +  b]  and A"=  [ - T ,  T]\(A w SA). To flip spins in directly adjacent 
intervals costs to much entropy. Therefore we average over intervals of 
length &, independently of T, in between. Let at be the spin configuration in 
the set I. We define the stochastic map 

(Kf)(a)=f#v,+(da'oA I --aA, aA,) f (--aA,  a'~A, aAc) (10.1) 

for bounded functions f :  9 ( [ - T ,  T], { - 1 , 1 } ) ~ N .  Here # ) , + ( ' l ' )  
denotes the conditional expectation. The dual of K acts on measures. If 
they have a density g with respect to #), + (da), then 

K*g#~r. + (da) - (K*g)(a) #~r, + (da) (10.2) 

with 

(K*g)(a) = RA(a) f #~,+ (da'oA I --aA, aAc) g(--aA, a'eA, aa,) (10.3) 

Let #~r + (daA, daAc) be the joint distribution of the spin configuration in A 
and A c. Then RA(a ) is the Radon-Nikodym derivative of #~-+(d(--aA)), 
daA,) relative to #~, + (daA, daAc) By a straightforward computation 

(tanh ••)2 ~ RA(a) <~ (tanh ~&) 2 (10.4) 

independently of A and T. 
We define the entropy and the 

#~, + (da) f (a )  = 1 = ~ kt~, + (da) g(a), as 
relative entropy for f, g ~> 0, 

S( f )  = - f #k  + (da) f (a)  log f ( a )  (lO.5) 

S ( f  Lg) = - f  #~r, + (da) f (a)  log f ( a )  

+ f #"r, + (da) f (a )  log g(a) ~< 0 (10.6) 
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Under any stochastic map R acting on probability measures with density 

S(Rf  [ Kg) >1 S ( f  l g) (10.7) 

(Refs. 48 and 49). Therefore 

S(K*g[K*I)>~S(g] 1) = S(g) 

S(K*g) >~ S(g) - f #~,+ (da) g(a)(K log RA)(a) 

>1 S(g) + 2 log(tanh e6) (10.8) 

With these preparations the argument of Ref. 30 can be copied. We 
only sketch the main differences. We pick n disjoint intervals B 1,..., B n of 
equal length and separated by intervals of fixed length ~. Then 
g = Z -1 exp{ - �89 ~ dt ds V ( t -  s)[ 1 - a(t) a(s)] + b.c. } relative to the free 
measure/~,+ (de) and f j =  K*g with A in the definition of K replaced by 
Bj. A s is the set of spin configurations such that ~ ,  dt a(t)<~ O. Then 

f #~, + (#a) fJ(a) z(A;) = f Uk + (aa) g(a) Kz(A;) 

Therefore K* takes the role 
f = (1/n) Z~ =1 fj. Then 

=({Igjdta(t)<~O}>T, + (flV) (10.9) 

of the spin flip operation. We define 

1 ~ S(fj) + log n - const S(f)>~n j=l 

>~ S(g) + log n - const + 2 log(tanh e6) (10.10) 

Therefore the additional intervals of length 6 produce only an error 
independent of n in the entropy estimate. This does not count, since energy 
and entropy of order log n are compared to each other. 

We conclude the following. 

Theo rem 2. If~p(dco)~o-2<o% then for a n y f l a n d e > 0  

<~(0) > + (/~ v, ~) = o (10.11) 

The Gibbs state ( ' ) ( f lV,  e) is independent of the choice of boundary con- 
ditions. 
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T h e o r e m  3. Let V(t)~t -2 for large t 
lim,~ oo t2V(t)=c>O]. Let m * =  (a(O))+(flV, ~). 

(i) Let ~ dt[(a(O)a(t)> +(flV, e ) - m * 2 ] <  oo 

Then either m * =  0 or 

[in the sense that 

4tim .2/> 1 (10.12) 

(ii) Let 

a* = min(1, - l i m  sup {log[ <a(0) a(0))  +(fiV, ~) - m*2]/log(1 + t)}) 
t ~ o o  

(lO.13) 

Then either m * =  0 or 

4/~m .2 >~ a .2 (10.14) 

If at (ec(/?),/~) the truncated two-point function has a power law decay, 
then by (10.13) the spontaneous magnetization has to jump. 

As pointed out by J. Bricmont, (10.12) and (10.14) lend further sup- 
port for the phase diagram of Fig. 1. If at some point in the region 
{~ > 0, fl < 1/4} m* > 0, then necessarily the susceptibility has to diverge 
because m'Z< 1. Furthermore by (10.14) there could be no power law 
decay of the truncated two-point function with an exponent independent of 
3. Both properties would be rather surprising. 

11. GROUND STATE EXPECTATIONS OF THE PHONON FIELD 

So far we have directed our effort to <az)+-  We showed that in the 
physical case, p(co)g co for small o), the quantum particle becomes localized 
in one of the two wells provided the coupling is strong enough. Here we 
want to analyze how the phonon field changes its properties when such a 
transition occurs. 

We relate ground state field correlations to expectations in the Ising 
model. The identification is obtained at finite T. As before, we let then 
T ~ oo followed by the limit h ~ 0 + if necessary, f denotes here a rapidly 
decreasing test function and a( f )= ~ dk f (k)  a(k). 

(i) <a + ( f)  + a(f)  > +. The Hamiltonian is perturbed as 

Hx = H - - ~  E f(kj)[Zo(kj) ] 1/2 xj (11.1) 
J 
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and we want to compute the derivative of t r { e x p [ -  THA] } at 2 = 0. Going 
through the functional integral representation yields 

(a+(f)+a(f)}+ = - ( a ( 0 ) } +  fdk[2(k)/2~o(k)]f(k) (11.2) 

(ii) i (a+(f)-a(f)}+. The Hamiltonian is perturbed as 

HA= H - ~  ~ f(kj){2/E2oo(kj) ]l/2} ( - i  ~ )  (11.3) 

We use the Cameron-Martin formula for the functional integral represen- 
tation. The stochastic integral vanishes because of periodic boundary con- 
ditions and the remainder is second order in 2. Therefore 

i (a+( f ) -a( f ) }  + =0 

(iii) (a+(f) a(f)} +. The Hamiltonian is perturbed as 

HA= H---~T ~ f(ki) f(kj) { [~o(k~)~o(kj)]1/2 XiXj 
t,J 

- [~(k3~(kj)] 1/~x~Oxj ~u 

(11.4) 

(11.5) 

and we want to compute the derivative of t r [ e x p ( - T H D ]  at 2 = 0. The 
functional integration is no longer with respect to independent Brownian 
motions. Rather the covariance is 

b~-~f(ki)f(kj)[~o(k,) a~(kj)] 1/2 (11.6) 

As before we integrate over the Brownian motions. The effective interaction 
for the Ising model takes the form 

2 ~ 2(ki) 2(kj)[cn(ki) c9(kj)] i/2 G~A)(s, t) (11.7) 
i , j  

with G~?~(s, t) = G}/.~ s) and 

G~A)(s, t) = Zs ~ tr{exp[ - ( T -  t) H A ] xj 

x e x p [ - ( t - s )  H A] xiexp(--sHA)} (11.8) 

for t >t s. Here 

H A = ~ ~o(kj) a + (kj) a ( k j )  - -  a + (f) a(f) (1 1.9) 
J 
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and the trace is over the phonon field. We differentiate at 2 = 0 and take 
the limit T ~ oo. Then 

(a+( f )  a(f)  ) + = f v 
Jo 

f dk ) .(k)f(k) f dk' 2(k') f (k ' )  dt 

;o (a(O)a(t))  + d~e -~~ ~)e -~ (11.10) 

We denote by m * =  <a(0)>+. From (11.2) we conclude that if m* # 0  
the phonon field is polarized. From (I 1.10) we obtain for the total number, 
N, of phonons 

<N>+ = dt V(t)<a(O)a(t)>+ (11.11) 

If m * =  0, it is reasonable to expect that <a(0)a(t)> + decays as the poten- 
tial (certainly this is the case in the domain of validity of the mean field 
bounds; cf. Section 8) which implies <N> + < oo. Also <N> < oo whenever 
~ d t t V ( t ) < o o .  If V(t)~t  -2 or slower and if m * # 0 ,  then <N>+ =oo. 
The localization of the quantum particle is associated with an infinite num- 
ber of phonons. We discuss their distribution. At that stage, physically, it 
would be more reasonable to use the three-dimensional field and this could 
be done without difficulty. But for notational simplicity let us stick to our 
model. 

As before let v=(d2) be the spectral measure associated with the 
<a(0) a(t))+ correlation; cf. (3.20). Then from (11.10) the number, n(dk), 
of phonons in momentum interval dk is given by 

<n(dk)>+ = Vzz(d2){2(k)/[2+co(k)]}2dk (11.12) 

For the physical choice, co(k)= ]k] and 2(k) 2= fl ]k] for small k, we obtain 

kdk, if m * = 0  

(n (dk ) )+~  1 (11.13) 
-kdk, if m * r  

for small k. For large k the momentum distribution decays faster than 
Ikl 3 

Let n(dx) be the number of phonons in the spatial interval dx. From 
(11.10) we obtain 

co(k)] (n(dx))+ =fo"  vzz(d2) f dkeikX2(k)/[)~+ dx (11.14) 
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The density of phonons is bounded. For  the physical choice of 09 and 2 it 
decays for large x as 

{x -3 dx, if m * = 0  
(n (dx ) )+ ,~  -1 dx, if m * ~ 0  (11.15) 

Both in (11.13) and (11.15) we assumed that (~r(O)a( t ) )+~t  -2 for 
m* = 0. For  m* :~ 0 we only used that (a (0)  a( t ) )  + ~ m .2 as t ~ 0o. Finer 
details of the spatial and momentum density of phonons are then obtained 
from the rate of decay. 

We conclude that the localization of the quantum particle in one of 
the two wells is associated with the generation of an infinite cloud of 
infrared phonons located far out in space. 

12. MORE GENERAL STATE SPACES 

We approximated - �89 + V~ with V;.(q)=)41 _q2)2 ,  2 > 0 ,  by a two- 
level system. From the foregoing analysis it is clear that we could have 
treated also the full problem. The spin flip measure/~(d~r) as free measure 
has to be replaced then by 

where P(dq(')) is Brownian motion. If the coupling to the phonon field is 
of the form q |  then the effective interaction is 
still - �89 ~ dt ds V ( t - s )  q(t) q(s) with V ( t ) ~ t  -2. On a technical level, the 
properties of the measure (12.1) needed for our purposes are well 
understood. ~27) In particular to establish localization via the existence of a 
spontaneous magnetization, i.e., ( q ( 0 ) ) + ) 0 ,  we would as before average 
over short distances and use Wells' inequality to reduce ourselves to the 
Ising model. 

In fact a double-well potential is not needed at all. Let us denote the 
external quantum mechanical potential by Vqm in order to distinguish it 

- -  la-2 from the potential V of the effective interaction. If Vqm(q ) - -~  q , a > 0, 
then the spectrum of H (zero point energy of the Bose field subtracted) 
stops to be semibounded at some critical value of ft. But if 
Vqm(q ) ~ a Iqf 2+~, 7 > 0, then the ground state energy is finite at any coupl- 
ing strength. Let V( t )~ t  -2 and let Vqm(q ) = Vqm(-q). Then for sufficiently 
strong coupling the ground state is degenerate. The particle is no longer 
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allowed to "oscillate" in the potential. The reason becomes clear if we 
rewrite the effective interaction in gradient form as 

[,  { .  

�89 J dt ds V(t - s) q(t) q(s) : �88 J dt ds V(t - s)[q(t) - q(s)] 2 

The particular form of the coupling to the phonon field produces an effec- 
tive potential which drives the particle away from q--O. 

Physically the coupling q| dk2(k)[a+(k)+a(k)] is an oversim- 
plification which, however, does not show up in the two-level 
approximation. More realistically the coupling is of the form 

f dk eiqk2(k)[a+(-k) + a(k)] (12.3) 

with 2(k)=  2*( -k ) .  Then the effective interaction becomes 

f dt ds f dk I~.(k)l z e-~~ ik[q(t)-q(s)] (12.4) 

and the problem of a degenerate ground state has to be analyzed anew. 
Once we allow for a continuous external potential there is no reason 

to model the system only one-dimensional, q(t) is then a vector with the 
number of components equal to the number of degrees of freedom of the 
quantum system. The coupling to the phonon field may depend on the 
direction. Now the corresponding statistical mechanics model becomes 
more difficult to analyze. If the external potential has two minima of equal 
depth and if the coupling does not distinguish between them and does not 
create a new minimum, then the results of this paper should hold. Already 
for more than two absolute minima the situation becomes rather com- 
plicated as discussed in Ref. 50. In addition, with more than one com- 
ponent there is the possibility of a continuous symmetry such as rotations. 
The picture then changes considerably. For example, if V(t)~ t 2 and with 
O(n) symmetry, n ~>2, there is no phase transition, (59) (cf. also Ref. 51). 

13. C O N C L U S I O N S  A N D  OPEN P R O B L E M S  

Our analysis is yet another example for the power of functional 
integral and statistical mechanics methods in dealing with quantum 
mechanical problems. It would be of interest to see how other models for 
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matter plus radiation field, as, e.g., those treated in Refs. 52, and 53, would 
look like in this language. We have not pushed the method to its limits. 
But we have obtained a fairly complete picture of the static ground state 
correlations of the two-level atom and the Bose field. In the physical case 
p(co)~co for small co for fixed level splitting e in the limit h ~0 the reduced 
density matrix of the two-level atom is the projection onto (1/,,~)(~1) for 
zero coupling strength /~. As we increase /? the reduced density matrix 
becomes a mixture with some weight given to (1/,,/-2)( Jl  ). At a certain 
critical value /~,. the eigenbasis starts to turn and as /~--* oo the reduced 
density matrix becomes again a pure state now corresponding to (~). This is 
interpreted as a localization of the quantum particle in the right-hand well. 
The Bose field keeps the particle localized at the expense of generating an 
infinite number of low-momentum field quanta. Our results do not tell us 
what happens dynamically in an initial value problem. But in principle this 
could also be obtained from higher-order correlations of the Ising model. 

We list a few problems to which the method of this paper seems to be 
applicable. 

(i) Return to equilibrium. As a standard problem the initial state is 
p | co~ with p some state of the two-level system and co~ the equilibrium 
(KMS) state of the quasifree Bose field at inverse temperature /3. One 
wants to prove that in the limit t--* oo the state of the joint system con- 
verges to its equilibrium state at inverse temperature /~, /~< oo. To our 
knowledge only in case the joint system is quasifree this return to 
equilibrium has been proved. In this case the convergence as t-~ ~ can be 
reduced to a scattering problem in the one-particle space. (54,55) The dif- 
ficulty in the functional integral approach is to show that the spectral 
measures at finite volume ( - f i n i t e /~ )  (cf. Section 3) are absolutely con- 
tinuous with respect to the Lebesgue measure. 

(ii) Escape probability (cf. Section 2). The external potential for the 
quantum particle is of the form q2(1 _ q) for small q. Initially the Bose field 
is in its finite or zero temperature state and the particle in the wave 
function r localized at the metastable minimum. Let PA be the projection 
onto A = [ - 2 / 3 ,  2/3 ]. Then one wants to compute the survival probability 

[~t) (I//[ @coB(eiHtpA e-ill') (13.1) 

at time t. (We do not insist that this is the only way to define a quantum 
mechanical escape probability.) Coleman's bounce trajectory technique 
looks rather convincing. But even in the case of no coupling to the Bose 
field it is not clear to us how the escape probability computed in this 
fashion is related to (13.1). Certainly the rigorous treatment (11 proceeds dif- 
ferently. One difficulty is of how to deal with resonances. r 
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(iii) Unconfined motion. We exploited heavily that the external poten- 
tial confines the quantum particle and that as a consequence the system has 
a well-defined ground state. The general problem is whether functional 
integration offers also an effective tool in case the external potential is non- 
confining. (ii) is an example in this direction. An even better known exam- 
ple is the polaron, ~57) where the external potential is zero and the coupling 
is as in (12.3). On a rigorous level only the ground state energy has been 
investigated. ~58) It would be of interest to extract some dynamical infor- 
mation from the functional integral. 
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